Search results for "Sleep scoring"

showing 6 items of 6 documents

Automatic sleep scoring: A deep learning architecture for multi-modality time series

2020

Background: Sleep scoring is an essential but time-consuming process, and therefore automatic sleep scoring is crucial and urgent to help address the growing unmet needs for sleep research. This paper aims to develop a versatile deep-learning architecture to automate sleep scoring using raw polysomnography recordings. Method: The model adopts a linear function to address different numbers of inputs, thereby extending model applications. Two-dimensional convolution neural networks are used to learn features from multi-modality polysomnographic signals, a “squeeze and excitation” block to recalibrate channel-wise features, together with a long short-term memory module to exploit long-range co…

0301 basic medicineProcess (engineering)Computer sciencePolysomnographyPolysomnographyMachine learningcomputer.software_genreuni (lepotila)03 medical and health sciencesDeep Learning0302 clinical medicinepolysomnographymedicineHumansBlock (data storage)Sleep Stagesmedicine.diagnostic_testArtificial neural networksignaalinkäsittelybusiness.industryunitutkimusGeneral NeuroscienceDeep learningdeep learningsignaalianalyysiElectroencephalographyautomatic sleep scoringmulti-modality analysiskoneoppiminen030104 developmental biologyMemory moduleSleep StagesArtificial intelligenceSleepTransfer of learningbusinesscomputer030217 neurology & neurosurgeryJournal of Neuroscience Methods
researchProduct

Multi-modality of polysomnography signals’ fusion for automatic sleep scoring

2019

Abstract Objective The study aims to develop an automatic sleep scoring method by fusing different polysomnography (PSG) signals and further to investigate PSG signals’ contribution to the scoring result. Methods Eight combinations of four modalities of PSG signals, namely electroencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG) were considered to find the optimal fusion of PSG signals. A total of 232 features, covering statistical characters, frequency characters, time-frequency characters, fractal characters, entropy characters and nonlinear characters, were derived from these PSG signals. To select the optimal features for each signal fusion, …

Computer science0206 medical engineeringHealth InformaticsFeature selection02 engineering and technologyPolysomnographyElectroencephalographyta3112Approximate entropy03 medical and health sciences0302 clinical medicinepolysomnographymedicineEntropy (information theory)aivotutkimusta217ta113Sleep Stagesmedicine.diagnostic_testsignaalinkäsittelybusiness.industryPattern recognitionautomatic sleep scoringMutual informationuni (biologiset ilmiöt)020601 biomedical engineeringmulti-modality analysisRandom forestSignal ProcessingArtificial intelligencebusiness030217 neurology & neurosurgeryBiomedical Signal Processing and Control
researchProduct

An Automatic Sleep Scoring Toolbox : Multi-modality of Polysomnography Signals’ Processing

2019

Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. To speed up the process of sleep scoring without compromising accuracy, this paper develops an automatic sleep scoring toolbox with the capability of multi-signal processing. It allows the user to choose signal types and the number of target classes. Then, an automatic process containing signal pre-processing, feature extraction, classifier training (or prediction) and result correction will be performed. Finally, the application interface displays predicted sleep structure, related sleep parameters and the sleep quality index for reference. To improve the identification accuracy of minority stages, a layer-w…

MATLABSpeedupComputer scienceFeature extraction02 engineering and technologyPolysomnographyMachine learningcomputer.software_genreuni (lepotila)polysomnography0202 electrical engineering electronic engineering information engineeringmedicineHidden Markov modelSignal processingSleep Stagesmedicine.diagnostic_testbusiness.industrysignaalianalyysi020206 networking & telecommunicationsautomatic sleep scoringToolboxmulti-modality analysis020201 artificial intelligence & image processingArtificial intelligencebusinesscomputerClassifier (UML)MATLAB toolbox
researchProduct

Supplementing sleep actigraphy with button pressing while awake

2020

Objective/backgroundWrist-worn sleep actigraphs are limited for evaluating sleep, especially in sleepers who lie awake in bed without moving for extended periods. Sleep logs depend on the accuracy of perceiving and remembering times of being awake. Here we evaluated pressing an event-marker button while lying awake under two conditions: self-initiated pressing every 5 to 10 minutes or pressing when signaled every 5 minutes by a vibration pulse from a wristband. We evaluated the two conditions for acceptability and their concordance with actigraphically scored sleep.Participants and methodsTwenty-nine adults wore actigraphs on six nights. On nights 1 and 4, they pressed the marker to a vibra…

MaleTime FactorsPhysiologyTest StatisticsWalkingAudiologyMathematical and Statistical Techniques0302 clinical medicineMedicine and Health SciencesMusculoskeletal SystemClinical NeurophysiologyCognitive ImpairmentBrain MappingMultidisciplinaryCognitive NeurologyPhysicsQStatisticsRClassical MechanicsElectroencephalographyMiddle AgedWristElectrophysiologyArmsBioassays and Physiological AnalysisBrain ElectrophysiologyNeurologyPhysical SciencesMedicineFemaleSleep (system call)AnatomyResearch ArticleAdultmedicine.medical_specialtyImaging TechniquesScienceCognitive NeuroscienceNeurophysiologyNeuroimagingResearch and Analysis MethodsVibrationButton pressingEvery 5 minutesYoung Adult03 medical and health sciencesmedicineHumansWakefulnessStatistical MethodsAgedBiological Locomotionbusiness.industryElectrophysiological TechniquesBiology and Life SciencesActigraphyActigraphySleep scoringEvery Morning030228 respiratory systemBody LimbsCognitive ScienceSleep onset latencyClinical MedicineSleepPhysiological ProcessesbusinessMathematics030217 neurology & neurosurgeryNeurosciencePLOS ONE
researchProduct

A Deep Learning Model for Automatic Sleep Scoring using Multimodality Time Series

2021

Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. Automatic sleep scoring is crucial and urgent to help address the increasing unmet need for sleep research. Therefore, this paper aims to develop an end-to-end deep learning architecture using raw polysomnographic recordings to automate sleep scoring. The proposed model adopts two-dimensional convolutional neural networks (2D-CNN) to automatically learn features from multi-modality signals, together with a "squeeze and excitation" block for recalibrating channel-wise feature responses. The learnt representations are finally fed to a softmax classifier to generate predictions for each sleep stage. The model pe…

aikasarjatComputer science02 engineering and technologytransfer learningMachine learningcomputer.software_genreConvolutional neural networkuni (lepotila)polysomnography0202 electrical engineering electronic engineering information engineeringSleep researchFeature (machine learning)aivotutkimusBlock (data storage)multimodality analysissignaalinkäsittelybusiness.industryunitutkimusDeep learningSleep laboratorySIGNAL (programming language)deep learningsignaalianalyysi020206 networking & telecommunicationsautomatic sleep scoringkoneoppiminen020201 artificial intelligence & image processingArtificial intelligenceSleep (system call)businesscomputer2020 28th European Signal Processing Conference (EUSIPCO)
researchProduct

Multi-modality of polysomnography signals’ fusion for automatic sleep scoring

2019

Objective: The study aims to develop an automatic sleep scoring method by fusing different polysomnography (PSG) signals and further to investigate PSG signals’ contribution to the scoring result. Methods: Eight combinations of four modalities of PSG signals, namely electroencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG) were considered to find the optimal fusion of PSG signals. A total of 232 features, covering statistical characters, frequency characters, time-frequency characters, fractal characters, entropy characters and nonlinear characters, were derived from these PSG signals. To select the optimal features for each signal fusion, four wi…

polysomnographysignaalinkäsittelyautomatic sleep scoringaivotutkimusuni (biologiset ilmiöt)multi-modality analysis
researchProduct